
Random Number

Generation
CMSC 426 - Computer Security

Slides originally by Dr. Marron, modified by Robert Joyce

Outline

• Properties of PRNGs

• LCGs

• Blum, Blum, Shub

• NIST SP 800-90A

Random Number Uses

• Generation of symmetric keys

• Generation of primes (p and q) for RSA

• Generation of secret keys for Diffie-Hellman

• Nonces for cryptographic protocols

The “P” in “PRNG”

• Don’t typically have access to a true random number

generator (RNG).

• RNGs require some source of random noise, i.e.

special hardware.

• Instead, use an algorithm that produces numbers that

appear random - a Pseudo-Random Number

Generator or PRNG.

• NIST documents also refer to a PRNG as a

Deterministic Random Bit Generator (DRBG).

PRNG Requirements

• Statistical Properties. What does it mean to “appear

random?”

• Output of the PRNG should be uniformly

distributed.

• Outputs should appear independent. Can not infer

a value from a previous or future value.

• Unpredictability. For cryptography, the statistics don’t

matter so much as that the values be unpredictable.

A simple PRNG

• The Linear Congruential Generator (LCG) is

perhaps the most commonly used PRNG.

• Given constants a, c, and m and an initial seed X0,

generate numbers according to the formula

Xn+1 = (a Xn + c) mod m

• The selection of the constants is important.

LCG Examples

• Example: a = c = 1.

• Example: a = 7, c = 0, m = 32, X0 = 1.

• Example: a = 5, c = 0, m = 32, X0 = 1.

Good LCGs?

• What would make an LCG good?

1. Full-period generating — generates all

values 0 < X < m.

2. Should appear random as determined by a

battery of statistical tests.

3. Efficient on current architectures (64 bit).

LCG Parameters

• If n is a power of two, choose a, c such that

1. c is relatively prime to n (so c is odd).

2. a - 1 is divisible by 4.

Hull & Dobell, Random Number Generators, SIAM Review, Vol. 4, No. 3 (July

1962), pp. 230 - 254.

• Some examples from Wikipedia:

n a c

glibc 231 1103515245 12345

MS Quick C 232 214013 2531011

http://en.wikipedia.org/wiki/Linear_congruential_generator

LCGs are Weak

• Unfortunately, LCGs are not appropriate for

cryptography.

• Python uses a PRNG called a Mersenne Twister,

which is better than an LCG, but still not good

enough for cryptography.

Blum, Blum, Shub

• We’ve seen that a simple PRNG isn’t suitable for

cryptography (LCG)

• The Blum, Blum, Shub (BBS) generator is simple

and secure — but has its own limitations.

• BBS is provably secure if used correctly; its

security is based on the difficulty of factoring.

BBS Parameters

• Construct a composite modulus M = p⋅q with the

following properties:

• p and q are primes of “cryptographic size” (at

least 512 bits each)

• p and q are both congruent to 3 mod 4.

• Generate a seed x0, a random positive integer

less than M and relatively prime to M.

BBS Generation

• The state of the generator is updated according to

the rule:

xi+1 = xi
2 mod M.

• From each xi, extract the low-order bit. That is,

the pseudo-random sequence is:

bi = xi mod 2, i = 1, 2, 3, …

• Example: p = 7, q = 11, x0 = 17.

Security and Efficiency

• Given a sequence of bi values, it is “difficult” to

recover a state xj (future or past).

• The difficulty is proven to be equivalent to a hard

mathematical problem, which is in turn is

believed to be equivalent to factoring M.

• So what is the downside? Efficiency. We are

computing one modular exponentiation for each

bit of pseudo-random output.

NIST SP 800-90A

• PRNG based on AES in CTR mode which is

suitable for cryptographic applications.

• Note: NIST uses the term Deterministic Random

Bit Generator (DRBG) rather than PRNG.

• The algorithm consists of separate Initialization

and Generation phases.

• We’ll see a simplified version of the standard using

AES-128…

Initialization

• The following steps initialize the PRNG:

1. Obtain 256 bits of random "seed" data; the first 128 bits

will be denoted (K0), and the remaining 128 bits will be

denoted (V0).

2. Initialize V and K to zero.

3. Update V ← V + 1 mod 2
128

.

4. Encrypt V with key K; save the output K'.

5. Update V ← V + 1 mod 2
128

.

6. Encrypt V with key K; save the output V'.

7. Set K = K0⊕ K' andV =V0⊕V'.

Generation

• Generation of n blocks of pseudo-random data:

1. Update V ← V + 1 mod 2
128

.

Encrypt V with key K; save output as X.

2. Update Output ← Concatenate(Output, X).

3. Repeat steps 1 - 3 a total of n times.

4. Return Output.

• After generation, V and K are updated using steps 3 - 7 of

the Initialization.

• A counter tracks the total number of pseudo-random bits

produced; after some threshold, the PRNG must be re-

initialized.

Which PRNG to use?

• For non-cryptographic applications an LCG is usually
sufficient.

• For small volumes of critical pseudo-random bits, BBS
would be a reasonable choice, but there are few other
practical uses

• For large volumes of pseudo-random bits, a PRNG
from SP 800-90A will be secure and efficient.

There are many other PRNGS: this is just a sample!

